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Abstract

To make progress towards multi-modal AI assistants
which can guide users to achieve complex multi-step goals,
we propose the task of ‘Visual Planning for Assistance
(VPA)’. Given a goal briefly described in natural language,
e.g., “make a shelf”, and a video of the user’s progress so
far, the aim of VPA is to obtain a plan, i.e. a sequence of
actions such as “sand shelf”, “paint shelf”, etc. to achieve
the goal. To address the challenges that VPA brings, i.e.
handling long video history, and arbitrarily complex ac-
tion dependencies, we decompose VPA into video action
segmentation and forecasting. We formulate the forecast-
ing step as a multi-modal sequence modeling problem and
present Visual Language Model based Planner (VLaMP),
which leverages pre-trained LMs as the sequence model.
We demonstrate that VLaMP performs significantly better
than baselines w.r.t all metrics that evaluate the generated
plan.

1. Introduction
Imagine assembling a new piece of furniture or making

a new recipe for a dinner party. To achieve such a goal,
you might follow a manual or a video tutorial, going back
and forth as you perform the steps. Instead, imagine an as-
sistive agent capable of being invoked through natural lan-
guage, having the ability to understand human actions, and
providing actionable multi-step guidance for achieving your
desired goal. To develop such multi-modal agents, we pro-
pose a new and intuitive learning task – Visual Planning for
Assistance (VPA).

As illustrated in Fig. 1, given a user-specified goal in nat-
ural language and corresponding video observations depict-
ing the user’s progress towards this goal, the VPA objective
is to generate the ordered sequence of next actions towards
achieving the goal. Focusing on the ubiquitous category of

*equal mentoring †corresponding author
1The images in the Fig. 1 and Fig. 2 are from Ego4D[5], and are for the

purpose of illustration only.
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Figure 1: Given a user’s goal described in natural lan-
guage and corresponding visual history1depicting the user’s
progress till time t, the aim of Visual Planning for Assis-
tance is to plan a sequence of actions aimed at achieving the
goal. Our approach entails multi-modal sequence modeling
using pre-trained video segmentation and language models.

multi-step stream of actions involved in human activities,
we based VPA off instructional videos of procedural activi-
ties like cooking, repair, assembly, etc., from YouTube.

Given a procedural activity, the assistant must estimate
the user’s progress from a long video. Then, conditioned
on the user’s progress, the assistant must generate and rec-
ommend a valid plan of actions. To overcome these chal-
lenges, we formulate an approach for VPA that is based on
video action segmentation and a transformer-based neural
sequence modeling, where the former allows us to deal with
long video history, while the latter can handle arbitrary se-
quential constraints [18, 8]. Furthermore, our formulation
enables leveraging state-of-the-art pre-trained transformer
based language models (PTLMs), which may contain use-
ful priors about action-action similarity, action-goal asso-
ciation, and action ordering [2, 7, 10]. Our model, which
we call Visual Language Model Planner (VLaMP), condi-
tions the generated plan onto the visual history by using
a transformer-based mapper network that projects embed-
dings corresponding to visual history into the input space of
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the LM. We show that VLaMP performs significantly better
than the baselines. 2

2. Visual Planning for Assistance
In this section, we introduce Visual Planning for Assis-

tance (VPA), include the definition of VPA, and describe
the evaluation protocol. Firstly, the following two intuitive
inputs are given to any model performing VPA.
Goal Prompt (G). The natural language description (in
short phrase) of the user’s goal. Ex: “build a shelf”, “change
a tire”, etc.
Visual History (Vt). An untrimmed video that provides
context about the user’s progress towards a goal from the
start till time, say t. Assume that Vt contains k actions per-
taining to the goal, then VPA doesn’t have access to these
steps or k and must work with Vt directly.

The objective of VPA is to generate a plan T =
(ak+1, . . . , ak+l), a sequence of actions that should be ex-
ecuted (in the next steps) to assist the user in achieving the
goal G, where ai are represented in natural language but
come from a closed set A.

Evaluation using Open-Sourced Video Data. We lever-
age existing datasets CrossTask [20] and COIN [13] for
VPA, based on the following three requirements: (1) Rich
diversity of activities from multiple domains, (2) goal-
oriented activities consisting of long sequences of actions,
and (3) Action annotations from a fixed closed set of ac-
tions.
Metrics. The planning performance of a VPA model
is measured by comparing the generated plan T̂ =
(âk+1, . . . , âk+l) to the ground truth plan T for l actions
in the future, given Vt and G. Here âk+i denotes the predic-
tion for the k+ i-th step given history till k-th step. We use
the following metrics, listed in decreasing order of strict-
ness: success rate (SR), mean accuracy (mAcc), mean in-
tersection over union (mIOU), and accuracy of predicting
the next action i.e. nAcc. Complete details of the metrics
are included in Appendix J.

3. Visual LM Planner
In this section we describe our approach for VPA, called

Visual Language Model based Planner (VLaMP), consist-
ing of a segmentation module and PTLM based sequence
prediction module.

3.1. Planning with Segmentation and Forecasting

We define π as a goal-conditioned, multi-modal se-
quence prediction problem π = P (ak+1, ak+2, · · · |

2To enable use of our formulation as a benchmark for Visual Planning
for Assistance, we release the data processing code, as well as metrics and
model implementation.
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Figure 2: VLaMP – Segmentation Module. The
untrimmed visual history Vt is converted into segments,
each consisting of observation oi and the action ai. The ob-
servation oi is the collection of video frames of δ seconds
around the start time stamp ti of the corresponding action
ai. Two such segments are shown here.

Vt, G). However, due to the high-dimensional state space
of untrimmed video Vt, and availability of limited data to
learn the distribution over valid action sequences, working
with π directly is challenging. So, as shown in Eq. 1,
we decompose π into two modules: (1) video segmenta-
tion module, which converts the untrimmed video history
Vt into a sequence of video segments i.e. a segment his-
tory Sk = (s1, . . . , sk), where each segment corresponds
to an action ai that occurred in the video; (2) forecasting
module, which transforms the output of the segmentation
module and generates the plan.

π =
∑
Sk

P (ak+1, ak+2, · · · | Sk, G)︸ ︷︷ ︸
Forecasting

P (Sk | Vt)︸ ︷︷ ︸
Segmentation

, (1)

But, since the summation in Eq. 1 is intractable, we use it
only as the guiding expression to formulate the input and
output of both modules, which are described in the follow-
ing subsections.

3.2. Segmentation Module

This module splits the untrimmed video history Vt into
segment history Sk = ((o1, a1), . . . , (ok, ak)) of multiple
segments, each segment corresponding to an action. Here
Ak = (a1, . . . , ak) and Ok = (o1, . . . , ok) are the action
and observation history, respectively as illustrated in Fig. 2
(see Appendix K for details).

3.3. Forecasting Module

The usefulness of π’s decomposition expressed in Eq. (1)
becomes apparent now. Modeling the segmentation mod-
ule’s output as segment history Sk, where each segment
consisting of action and observations, allows writing the
output of the forecasting module in an autoregressive man-
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Figure 3: VLaMP – Forecasting Module. As shown in
left and middle, actions and observations obtained from the
segmentation module are encoded using appropriate modal-
ity encoders. The observation encoder leverages pretrained
video encoder for observations, while also learning a map-
per that aligns the representations from observations with
actions. As shown on the right, VLaMP uses a joint se-
quence model on top of interleaved action (blue) and ob-
servation (gray) representations to forecast autoregressively
the next representation.

ner:

P (ak+1, ak+2, · · · | o1, a1, . . . , ok, ak, G)

=
∏
i>0

∑
ok+i

P (ok+i, ak+i | o1, a1, . . . , ok, ak, G). (2)

We instantiate the forecasting module for π using a pre-
trained transformer-based LM. Next we present the details
of the encoders for the two modalities and the LM based
sequence model.
Action encoder (fact) Each action ai in Ak is encoded by
fact and the output is denoted by αi. Concretely, token em-
beddings are expressed as:

(α1, . . . , αk) = (fact(a1), . . . , fact(ak)) ,where

αi = (α1
i , . . . , α

ri
i ) ∈ Rri×d (3)

As we illustrate in Fig. 3 (left), each action ai is tokenized
into ri tokens using appropriate tokenizer for the LM, the
tokens are indexed using the vocabulary of the LM, and are
represented using an embedding lookup from the token em-
beddings of the LM to produce αi. Here, ri is the number
of tokens and d is the dimensionality of token embeddings.
Observation encoder (fobs). Recall, the visual observation
history Ok comprises of oi corresponding to action ai, each
of δ frames. As illustrated in Fig. 3 (middle), we transform
each oi employing the widely-adopted S3D backbone [16]
fS3D∗ (∗ denotes backbone is frozen). We must project vi-
sual encodings to a shared latent space of action (language)
embeddings described before (αi). To this end, we map
S3D features via a trainable transformer mapper fmap. Con-
cretely,

(β1, . . . , βk) = (fobs(o1), . . . , fobs(ok)) ,where

βi = (β1
i , . . . , β

δ
i ) ∈ Rδ×d and fobs = fS3D∗ ◦ fmap (4)

Overall, as we show in Fig. 3 (right), the resultant en-
coded sequence of representation for Sk is thus

fenc(Sk) = (β1, α1, . . . , βk, αk) = Hk,

Sequence model (fseq). Given the above encoding for the
segment history Sk, the role of the sequence model is to
predict a representation of the next token, that would in re-
turn enable VLaMP plan generation capabilities for VPA.
Importantly, in the process of generating sequence of fu-
ture actions autoregressively, we would also need to gener-
ate the representations of ‘future observations’. Therefore,
as we shown in Fig. 3, our sequence model, which consists
of the transformer layers of a PTLM, also produces rep-
resentations for vision (in addition to the necessary action
tokens).

3.4. Training

The joint training of the segmentation and forecasting
modules following Eq. (1) is intractable. But, by exploiting
the availability of unpaired training data, we approximate
Eq. (1) by feeding in the output of the segmentation module
to the forecasting module and training them separately, each
on their respective labeled data. The video-action segmen-
tation model is trained utilizing the VideoCLIP setup [17],
where in the segmentation model performs classification to
predict the action for each second of the video. The fore-
casting model is trained by adopting the next representation
prediction objective. Unlike vanilla LM pretraining, how-
ever, we also need to train for predicting visual represen-
tations in addition to text (action). Therefore, we use two
different losses Lact and Lobs for text and visual represen-
tations respectively. Specifically, Lact is the conventional
cross-entropy loss over the LM’s vocabulary VLM for the
action representations while Lobs is the mean-squared er-
ror between the predicted and the ground truth observation
representations. The total loss is the sum of both the loss
terms.In order to have a stable training, we use ground truth
action history to construct Sk (and subsequently Hk) in-
stead of the output of the segmentation module. Appendix
provides further details on loss and optimizers for training.
Inference. The inference is performed using a beam-search
like algorithm that works at the representation level and al-
lows multi-token visual and text representations. The de-
tailed algorithm is presented in Appendix C.

4. Experiments
We instantiate VLaMP’s segmentation module utilizing

VideoCLIP [17] fine-tuned on COIN and CrossTask; and
the sequence model fseq (in the forecasting module) by
GPT2 [11, 15].
Data. For a video V with goal G, both CrossTask [20]
and COIN [13] provide annotations of the form



{ak, (tk, t′k)}Kk=1, where ak are the actions in the video, and
tk (resp. t′k) are the start (resp. end) timestamps ak. Given
an annotated video consisting of K steps, we generate
K − l examples, each with input xk = (G,Vtk) and output
yk = (ak+1, . . . , ak+l), for k = 1, . . .K − l (leaving
at least l steps to predict in each example). 3 Therefore
from M videos, we generated N =

∑M
m=1(Km − l)

examples, where Km is the number of steps in the m-th
video, forming a dataset D = {x(j), y(j)}Nj=1 suitable for
VPA (total number of samples in shown in Table ??).
Baselines. As a first step towards benchmarking, we uti-
lize a random baseline, and additionally adopt a variety of
strong goal-conditioned models. The procedure planning
task is most relevant task from the literature to VPA, there-
fore, we adapt 4 the widely used DDN model introduced by
Chang et al. [4], since it is an established model in many
benchmarks in prior works [1, 19, 12], hence, is chosen for
our experiments. The key details regarding our baselines
are as follows 5:
• Random: Predicts the plan by picking all l actions uni-
formly randomly from the set of all actions A.
• Random w/ goal: A stronger baseline; for each goal G, we
allow privilege access to a set of applicable actions to that
goal AG ⊆ A, and predicts the plan by randomly picking
actions from the restricted set.
• Dual Dynamics Network (DDN) [4]: We keep DDN’s net-
work structure but use Algo. 1 for inference on VPA.

4.1. Results

In the following, we include quantitative findings of
benchmarking methods on two video data sources ( Tab. 1).
More quantitative results, ablations, error analysis, and
qualitative results are included in the Appendix I.
Improved performance across video datasets. As we
show in Tab. 1, VLaMP significantly outperforms the base-
lines. DDN that is customized for procedural tasks performs
significantly better than heuristics leading to a mAcc boost
from 12.7 → 24.1% (row 2 and 3, l = 4, Tab. 1). With
our novel decomposition and pretraining objective, VLaMP
outperforms these baselines with a further bump up from
24.1 → 31.7% (row 3 and 4).
Steady gains in short & long horizon predictions. Com-
paring columns corresponding to l = 1 and l = 4, the per-
formance (as one might expect) decreases, across all base-
lines and tasks. However, zooming in on COIN results, we
observe consistent gains of VLaMP over DDN. Particularly,
a relative improvement of 54% (29.3 → 45.2) for l = 1
(row 7 and 8, Tab. 1) and a relative improvement of 68%
(21.0 → 35.2) in mAcc.

3Since we evaluate for three and four next steps on our datasets, we use
the maximum required length and set l = 4.

4We detail these adaptations in Appendix B.1.
5Additional details are deferred to Appendix B.

Data Model l = 1 l = 3 l = 4

{n/m}Acc SR mAcc mIOU SR mAcc mIOU

Cross-
task

Random 0.9 0.0 0.9 1.5 0.0 0.9 1.9
Rand.(w/ G) 13.2 0.3 13.4 23.6 0.0 12.7 27.8
DDN [4] 33.4 6.8 25.8 35.2 3.6 24.1 37.0
VLaMP (ours) 50.6 10.3 35.3 44.0 4.4 31.7 43.4

COIN

Random 0.1 0.0 0.1 0.2 0.0 0.1 0.2
Rand.(w/ G) 24.5 1.7 21.4 42.7 0.3 20.1 47.7
DDN [4] 29.3 10.1 22.3 32.2 7.0 21.0 37.3
VLaMP (ours) 45.2 18.3 39.2 56.6 9.0 35.2 54.2

Table 1: Performance on different datasets and horizons.
The mean of various metrics (Sec. 2) obtained using 5 runs
with different random seeds (std. errors are provide in Ap-
pendix I). Note that the action and observation history are
the output of the separately finetuned video-action segmen-
tation model and hence are noisy compared to the ground
truth history.

Privileged random baseline comes close to DDN on easy
metrics. Interestingly, we observe the performance of Ran-
dom w/ goal comes close to DDN, when evaluated for le-
nient metrics like mAcc and mIOU (in COIN section of
Tab. 1). Note, Random w/ goal enjoys the privileged access
to (a much smaller) ‘relevant actions set’ for a given goal.
On an average, the relevant or feasible action set is smaller
for COIN than CrossTask videos. This a priori access to fea-
sible actions makes Random w/ goal a competitive baseline.

Goal-conditioning is crucial. A key difference between
procedure planning and VPA is goal conditioning is pro-
vided to the neural policies. In Tab. 5 (rows 1 and 2), we
measure the effect of providing the goal as a textual descrip-
tion for last-observation-only models. The only difference
is goal prompt G, which increases mAcc performance from
44.5 → 53.1% for l = 1 and 28.3 → 34.7% for l = 3.

5. Conclusion
Visual Planning for Assistance is a new and intuitive for-

mulation to support planning from raw visual observations
for assisting humans in day-to-day activities. We bench-
mark VPA using standard prior work and a new multi-modal
sequence modeling formation of VLaMP. The novel de-
composition of a VLaMP policy into video action segmen-
tation and forecasting leads to several efficiency and model-
ing benefits. Particularly, this allows to leverage pre-trained
LM that leads to significant performance gains. Alternative
decompositions and self-supervised pre-training objectives
for PTLMs are interesting ways forward for VPA.
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Appendix – Pretrained Language Models as
Visual Planners for Human Assistance

We structure the supplementary material as follows:

A. Necessary details and clarifications that we couldn’t
include due to space in the main paper.

B. Implementation details of DDN [4]. Two new base-
lines – GPT3-based [3] language-only method and an-
other based on most-probable actions.

??. Step-by-step algorithm for inference, for reproducibil-
ity and technical details.

D. Optimization, hardware, and training details associ-
ated with training VLaMP.

E. Comparisons to Ego4D’s LTA benchmark.
I. Expanded empirical results, benchmarking the above

additional baselines, and deep-dive into error analysis.

We will opensource our model code and weights, as well
as the splits of the dataset to enable further research on VPA.

A. Clarifications
Due to space, some of the explanations in the main paper

might be insufficient or unclear in a first read. Hence, we
pre-emptively clarify some of these nuances in this section.

• VLaMP uses a randomly initialised forecasting model
(L790) → This refers to VLaMP when its forecast-
ing module is trained with random initialization, i.e.,
the transformer of the same architecture trained from
scratch instead of LM pre-training.

• Per-second accuracy of video-action segmentation
(L798-799) → The finetuned VideoCLIP [17] for
video-action segmentation outputs an action label for
each second of a video. We report this accuracy fol-
lowing the convention in the original VideoCLIP pa-
per, averaged over all videos in the test set.

• (L615-617) A more accurate representation should in-
clude a the log-sum-exp operator. The correct expres-
sion is

Lact(ĥj) = hj · ĥj − log

VLM∑
p=1

exp
(
hp · ĥj

)
.

B. DDN and Additional Baselines
In this section we include more information about base-

lines that we benchmark on VPA in experiments (Sec. 4).
First, we include necessary details of reproducing the
DDN [4] and how we keep it consistent and fair to the pro-
posed VLaMP. Second, we provide two additional baselines
– a heuristic baseline, which leverages the structure of our
goal-oriented activities for generating plans and a prompt-
based baseline using a large LM. Finally, we briefly discuss

Data Model l = 1 l = 3
{n/m}Acc SR mAcc mIOU

COIN GPT-3 [7] 12.1 0.5 14.3 22.3
VLaMP (ours) 67.2 25.5 51.6 59.1

Table 2: Performance of VLaMP vs. GPT-3 prompting.
Inspired from [7], we sub-sample 310 videos from the test
set of COIN to test a prompting-based, language-only base-
line using GPT-3 [3], and compare it with VLaMP on the
same videos. Such an application of prompting with GPT-3
does not perform well on VPA.

prior procedural planning methods, which we choose not to
compare with.

B.1. DDN [4]

Technical Background. Chang et al. [4] proposed Dual
Dynamics Network (DDN) for procedural planning. The
objective is to learn a latent space representation of obser-
vations and actions in addition to a dynamics and conjugate
dynamics model that operate over this latent space. The
latent representations and recurrent RNN-based dynamics
model are learned together by minimizing a joint loss over
predicted observations and actions. Such dynamics mod-
eling in latent space is similar in spirit to the forecasting
module in VLaMP (Eq. (2)).
Implementation. As shown in Fig. 5, we instantiate DDN
for VPA by using an LSTM-based [6] fseq in the forecast-
ing module, which operates over the observation representa-
tions obtained using the same observation encoder fobs con-
sisting of pretrained S3D [16] and a mapper as VLaMP and
action representations from an embedding layer-based ac-
tion encoder fact. Unlike VLaMP, where the mapper aims to
project the visual observation representations into the input
space of the pretrained LM, the mapper in DDN only pro-
vides trainable parameters to finetune the frozen S3D repre-
sentations for downstream dynamics model. Both fseq and
fact are initialized with random weights. Just as VLaMP,
DDN is trained using cross-entropy loss for predicted ac-
tions and mean-squared error for predicted observation rep-
resentations to jointly learn fobs, fact, and the sequence
model. At inference, the model is unrolled autoregressively
(with beam search as shown in Algo. 1), for prediction of
both action and observation representations. These design
choices are consistent with VLaMP.

B.2. Additional Baseline: GPT-3 Planner (Tab. 2)

Following Huang et al. [7], where the authors use a LLM
as zero-shot planners, we too also experiment with prompt-
ing a frozen pretrained large language model (GPT-3) for
VPA. Specifically, a goal prompt and the current history



Algorithm 1: Inference for VLaMP and baselines
Data: encoded representations for history Hk = (h1, . . . , hn), beam size B

Result: plan for next l steps T̂ = ak+1, · · · , ak+l

1 H0 ← {Hk}; // Initialize the set of encoded trajectories with the history
2 for i = 1, . . . , l ; // predict actions for l steps
3 do
4 Hi ← {H ⋄ fenc(a) | H ∈ Hi−1, a ∈ A} ; // All single action extension at i-th step
5 Φi ← {ϕ(H) | H ∈ Hi}; // score each trajectory

6 H̃i, Φ̃i ← top(B, sorted(Hi,Φi)) ; // Keep B highest scoring trajectories

7 H̃0
i ← H̃i;

8 for u = 1, . . . , δ ; // Predict δ observation representations autoregressively
9 do

10 H̃u
i ← {H ⋄ fseq(H) | H ∈ H̃u−1

i }
11 end
12 Hi ← H̃δ

i ;
13 end
14 T̂ ← readout(l, top(1, sorted(H̃l, Φ̃l))) ; // Read out last l actions from the top scoring beam

Figure 4: GPT-3 as a planner based on [7]. A language-
only baseline using GPT-3 on COIN. GPT-3 is prompted
autoregressively to generate next action based on the goal
and the history of actions taken for the goal.

of previously predicted actions (if available) are given as
a prompt to the GPT-3 model [3]. Then the next actions
for the given goal are generated autoregressively, consistent
with other baselines like VLaMP. As can be seen in Fig. 4,
this model has 2 stages: 1) next-action generation, and 2)
action retrieval. In the next-action generation stage, the
model is given the prompt and generates the next action. In
the action retrieval stage, the generated next action is com-
pared to all possible actions and the action that has the clos-
est similarity to the generated action, is chosen and placed
in the prompt. This step is required since we evaluate the
generated plans by comparing with ground truth actions for
the goal, where actions belong to a closed set as described
in Sec. ??. We use text-davinci-003 backend for generation,
and text-embedding-ada-002 for embedding, which is used
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Figure 5: DDN Implementation. The method utilizes
LSTM in the forecasting module for VPA. Consistent to and
analogous of VLaMP’s Fig. 3 in the main paper.

in combination with cosine similarity to retrieve the closest
action. We perform our generation step zero-shot without
giving any examples, as GPT3 can already follow the given
prompt template, and we only generate one action at the
time – in an autoregressive manner.

We sub-sampled the COIN test set, and compared
VLaMP with the aforementioned GPT3-based model. In
order to make the dataset suitable for language-only instan-
tiation of VPA, we removed videos that had less than four



unique actions. We then evaluate both models on this subset
of COIN. As can be seen in Tab. 2, VLaMP surpasses the
GPT3-based baseline on all measures.

B.3. Additional Baseline: ‘Most Probable Action’

We already benchmark two intuitive, heuristic baselines
as discussed in Sec. ?? and Tab. 1 of the main paper, partic-
ularly, denoted as random and random w/ goal.

Here, we introduce an additional, heuristic baseline
called ‘most probable action’. The key insight here is that
procedural activities are highly structured, i.e., certain ac-
tions occur together or occur in a certain order. We bake
this into a new baseline that captures this structure through
the probability distribution of the next action given the cur-
rent action.

To this end, the intuitive most probable action baseline
picks the most probable next action aj |ai from the action
set A. Akin to random w/ goal baseline, we also evaluate
a goal-conditioned most probable action baseline, that uses
a goal-specific set of actions AG ⊂ A during sampling.
Since these most probable baselines, provide a probability
distribution over the actions, we can employ beam search
(for fairness, with the same beam size same as VLaMP)
and pick the highest scoring plan. The results of this are
included in Tab. 3 (an expanded version of Tab. 1 from the
main paper).

B.4. On Porting More Baselines

Next, we briefly include some procedural planning ap-
proaches and reasons why they cannot be directly leveraged
for rigorous and fair evaluation. Wherever possible, we in-
clude our best attempts to compare with them.
PlaTe [12]: This is similar to DDN, albeit with a Trans-
former [14] as the sequence model instead of an LSTM [6].
However, unlike DDN (and VLaMP), PlaTe uses separate
Transformer-based models for state and action prediction.
We adopt an approach that allowed us to tap into this while
being consistent and fair in evaluation. Therefore, instead
of directly adapting PlaTe for VPA as we did with DDN,
we provide an ablation on VLaMP, which uses a Trans-
former trained from scratch as the sequence model (row R
in Tab. 5).
P3IV [19]: This employs a significantly different model-
ing framework compared to DDN and PlaTe. Specifically,
P3IV leverages a memory-augmented transformer as the se-
quence model and a probabilistic generative model to cap-
ture the noise and variability in predicted sequences. The
authors report significant performance gain on the task of
procedure planning, over DDN and PlaTe. However, P3IV
relies on the visual observation of the goal already com-
pleted, even at inference time. This is necessary to condi-
tion their generative model towards encoding multiple plans
from start to goal. Since P3IV needs the observations of

goal completed, it is incompatible to the motivation and the
very premise of VPA.

C. Inference for VPA (Alg. 1)
Before proceeding further, we pause and introduce ad-

ditional notation for the sequence model, which will make
the subsequent explanation for training and inference eas-
ier to follow. As shown in Figure 7, we alternatively de-
note the sequence of representations (β1, α1, . . . , βk, αk)

by Hk = (h1, . . . , hn), with n = kδ +
∑k

i=1 ri. A binary
mask M = (m1, . . . ,mn), where mi is 1 if the correspond-
ing representation is for an action and 0 otherwise, can help
obtain necessary action or visual observations. With this
notation, given first j representations denoted as h1:j , one
step of the sequence model produces the representation for
j + 1, i.e., fseq(h1:j) = ĥj+1.

Now we explain the inference procedure for VLaMP
briefly. Recall that we use 1 : n to denote a sequence of
n representations (i.e, h1:n = (h1, . . . , hn)). Additionally,
we denote the concatenation operator over two representa-
tion sequences by “⋄”. With this notation at hand, we define
the score of an action a ∈ A for following history h1:n as

ϕ(h1:n ⋄ fact(a)) =

ra∑
j=1

aj · fseq(h1:n ⋄ a1:j), (5)

where · is the vector dot product, and fact(a) = α1:ra =
(α1, . . . , αra) is the sequence of encoded representations
for action a. In other words, this score is the sum of unnor-
malized log-probability under the sequence model using the
standard softmax distribution. We use this scoring function
with to perform beam search.

C.1. Details of inference

In order to predict a sequence of next actions, we run the
sequence model, autoregressively to predict both the action
and observation tokens, with beam search on the action se-
quence. The inference algorithm is detailed in Algo. 1. We
first encode the history into a sequence of representations
Hk as described in Sec. 3.3, and initialize our set of en-
coder trajectories H0 using this single representation trajec-
tory (line 1 in Alg. 1). Then we start the inference procedure
that runs for l steps (line 2). At each step i we first infer the
next action and then also predict the representations for the
observation that follows it. To do the former, each represen-
tation trajectory in Hi is extended with the representations
of each action in the action set A (line 4). At this point, if,
for instance, Hi−1 had n trajectories, then after line 4, Hi

will have n×|A| trajectories. This is a temporary blow-up–
at line 6, we score all n× |A| trajectories and keep only top
B trajectories. Here, to balance diversity, we keep no more
than b trajectories with exactly same history. The parameter
b is usually referred to as per node beam size. Once we have



Dataset Method l = 1 l = 3 l = 4

nAcc SR mAcc mIOU SR mAcc mIOU

CrossTask

Random 0.9 ± 0.0 0.0 ± 0.0 0.9 ± 0.0 1.5 ± 0.0 0.0 ± 0.0 0.9 ± 0.0 1.9 ± 0.0
Random w/ goal 13.2 ± 0.2 0.3 ± 0.0 13.4 ± 0.0 23.6 ± 0.1 0.0 ± 0.0 12.7 ± 0.0 27.8 ± 0.1
Most probable 10.4 ± 0.0 1.7 ± 0.0 6.1 ± 0.0 9.9 ± 0.0 1.3 ± 0.0 5.5 ± 0.0 13.9 ± 0.0
Most probable w/ goal 12.4 ± 0.0 2.4 ± 0.0 8.9 ± 0.0 15.5 ± 0.0 1.5 ± 0.0 7.9 ± 0.0 20.5 ± 0.0
DDN [4] 33.4 ± 0.5 6.8 ± 0.3 25.8 ± 0.5 35.2 ± 0.6 3.6 ± 0.2 24.1 ± 0.4 37.0 ± 0.4
VLaMP (ours) 50.6 ± 1.4 10.3 ± 0.4 35.3 ± 1.1 44.0 ± 1.0 4.4 ± 0.2 31.7 ± 1.0 43.4 ± 0.9

COIN

Random 0.1 ± 0.0 0.0 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.0 ± 0.0 0.1 ± 0.0 0.2 ± 0.0
Random w/ goal 24.5 ± 0.2 1.7 ± 0.0 21.4 ± 0.1 42.7 ± 0.1 0.3 ± 0.0 20.1 ± 0.1 47.7 ± 0.1
Most probable 0.7 ± 0.0 1.6 ± 0.0 4.3 ± 0.0 6.8 ± 0.0 1.6 ± 0.0 8.2 ± 0.0 15.3 ± 0.0
Most probable w/ goal 23.9 ± 0.0 10.9 ± 0.0 18.0 ± 0.0 24.9 ± 0.0 9.1 ± 0.0 16.3 ± 0.0 32.2 ± 0.0
DDN [4] 29.3 ± 0.3 10.1 ± 0.4 22.3 ± 0.4 32.2 ± 0.6 7.0 ± 0.3 21.0 ± 0.4 37.3 ± 0.3
VLaMP (ours) 45.2 ± 0.8 18.3 ± 0.1 39.2 ± 0.3 56.6 ± 0.5 9.0 ± 0.3 35.2 ± 0.2 54.2 ± 0.5

Table 3: Expanded version of Tab. 1. The mean ± std. error of mean for various planning metrics obtained using 5 runs
with different random seed are shown for VLaMP and various baselines. Note that the action history and observations are
provided using the output of the action segmentation model and hence are noisy compared to the ground truth history.

beam
size (B)

per node
beam size (b) GPU

GPU
memory

Num
GPUs

(inference)

Num
GPUs

(training)

Avg. time
(training)

Avg. time
(inference)

batch
size

(training)

CrossTask 10 3 NVIDIA A100 80GB 1 GPU/model 1 GPU/model 2 s/batch 7.4 s/example 4
COIN 3 3 NVIDIA A100 80GB 3 GPUs/model 1 GPU/model 2 s/batch 6.1 s/example 4

Table 4: Hyperparameters and compute information for VLaMP.

B trajectories in Hi, we auto-regressively predict the next
δ tokens corresponding to the next observation, thus com-
pleting one out of the l steps of inference. This process it
repeated l times to generate a plan consisting of l actions.
We make this process efficient by storing the hidden state
of the transformer and limiting the forward pass only on the
new representations at each step. This is a common practice
for transformer based models in NLP. Due to beam search,
the inference process is slower than training as shown in
Tab. 4.

D. VLaMP Training (Tab. 4)
Unlike inference where a video with K steps results into

K − 4 examples, during training, like with language model
pre-training, we use a single forward pass to compute loss
for all tokens. Moreover, inference also uses beam search
making it more memory intensive. Thus, the training is
much faster and cheaper as compared to the inference. The
details of the compute used for each training and inference
run is shown in Tab. 4.

E. Comparison to Ego4D LTA Benchmark
In prior work, Ego4D’s Long-term Action Anticipa-

tion [5] benchmark task is likely the most relevant to VPA.
Hence, we dedicate a discussion of similarities and con-
trasts. We hope this helps the reader accurately place these

two tasks in our community’s diverse research goals and di-
rections.

Consistent to VPA, LTA also focuses on predicting a se-
quence of future actions given prior visual context for free-
form human interaction. Unlike LTA, VPA specifically en-
tails goal-oriented activities and indeed a natural language
goal prompt is of key importance to the definition of VPA.
So while the forecasting suite in Ego4D aspires to under-
stand human motion, we are instead keen to create assistive
agents that can interact and assist humans in their tasks.

Since LTA does not allow access or model the user’s
goal, recent approaches for LTA including the winning
model for Ego4D 2022 LTA challenge – ICVAE [9] have
to go via an additional step of inferring the intention of the
user. This provides more impetus to our goal-conditioned
and human-assitive design choice and motivation for VPA.
This is empirically backed as well, as we show in ablation
(row 1 in Tab. 5) – goal-conditioning is crucial for VPA.

I. Additional Quantitative Results6

Most probable action baseline. As shown in Table 3, the
performance of our intuitive heuristic baselines – most prob-
able action w/ goal, and Random w/ goal (i.e. the baselines
with actions restricted to the set of actions seen with the

6We number this section as I, to be consistent with the main paper ref-
erences.
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Figure 6: Zooming into the tails. (a) Average size of goal-specific action set AG across COIN and CrossTask datasets. COIN
has a relatively smaller mean than CrossTask, which reduces the difficulty of VPA on COIN. (b) Mean accuracy (mAcc) vs.
the history length k of various goals from CrossTask. Interestingly, plan generation for goals with longer history is difficult
and prone to higher errors as reflected in the mAcc (reasoning included in Sec. I). (c) Longer sequences are also less frequent
in the dataset. This contributes to high variance in performance for such sequences.
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Figure 7: Tokenized Sequence with Masks. The encoded
sequence of representations for k = 2 segments, denoted
alternatively using modality agnostic notation of H2 and
mask M for next token prediction training.

corresponding goal) is quite high for COIN dataset. We
find that this is due to the relatively small cardinality of the
action set for goals in COIN, i.e. the average size of AG for
different Gs.
Action distribution analysis. We dig deeper into the above
finding in Fig. 6(a). Particularly, we plot the distribution of
number of actions |AG| w.r.t G and find them to be quite
different in COIN vs. CrossTask. Here, |AG| ∈ A repre-
sents the set of goal-specific actions from the larger set of
actions A for each dataset. Specifically, the average size of
AG is 4.3 and 7.3, respectively for COIN and CrossTask,
reducing the difficulty of VPA in COIN. Also, notice the
long-tails in the distribution of CrossTask, making it even
more challenging.
Zooming into the tails and higher errors. In Fig. 6(b),
we plot the number of steps in the history (k) vs. the mean
accuracy (mAcc), averaged across all goals in CrossTask on
VPA. We find that plan generation with longer history leads
to higher errors as well as higher variance in performance.
We believe this trend emerges due to two reasons.

First, the presence of repetitive steps in certain goals
is high in longer history. Moreover, we find that longer
the history the wider is the space of possible plans (intu-
itively, multiple modes exist in the plan distribution land-
scape), which lead to higher variance. We illustrate this
in Fig. 8 with a qualitative result, for the example goal of
‘making kimchi fried rice’, the action ‘stir mixture’ repeat-
edly occurs between various actions involving the addition
of ingredients like onion, kimchi, rice, etc. However, the
number of times stir mixture occurs varies sporadically. For
instance, for the ground truth plan in the first example in
Fig. 8, the ‘stir mixture’ is missing between ‘add onion’
and ‘add kimchi’, but occurs twice after ‘add kimchi’, be-
fore adding other ingredients. Due to this sporadic vari-
ability, the predicted plan gets IoU of 75% on this exam-
ple, but mAcc and SR of 25% and 0, respectively. Another
common source of errors is repetition of sub-sequences of
actions depending on the visual signal in the ground truth.
Specifically, as seen in the second example in Fig. 8, which
shows an action trajectory for the goal of ‘jack up a car’, the
sub-sequence (‘raise jack’, ‘lower jack’), is repeated three
times. In this example, the repetition is due to overshooting
the target height of the raised car. However, for a planning
model, that only sees the visual input till k = 3 or time
tk, it is not possible to guess whether the car will overshoot
(undershoot, respectively) the target height after the next
application of ‘raise jack’ (‘lower jack’, respectively).

Second, as analysed in Fig. 6(c), longer trajectories are
exponentially less frequent in the dataset – forming the tail
of the data distribution of action sequences in the dataset.
This also contributes to high variance in performance for
such sequences.
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Figure 8: Qualitative Error Analysis for VPA. Ground truth plan T and the predicted plan T̂ by VLaMP for the goal
prompt of “making kimchi fried rice” (top) and “ Jack up the car” (bottom). Errors made by VLaMP can be attributed to
repetitions in actions. Details are included in Sec. I. Briefly, (1) uncertainty in the number of times actions are repeated and
(2) existence of equivalent plans for achieving the same goal, are contribute heavily to the errors for VPA. In the top, note
the action ‘stir mixture’ is repeated consecutively in the ground truth, but the model predicts it only once. Moreover, both
the ground truth and the predicted plans have correct steps for adding kimchi and onion but their order is different. Similar
repetitions result into errors for the goal of jacking up the car.
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Figure 9: Effect of segmentation errors. The figure
zooms in on two metrics mAcc and nAcc from Figure
10. As the classification error in segmentation, which is
shown along the x-axis increases, the performance gap be-
tween the model with access to observation history VLaMP
(G,Ak, Ok) and that with access only to the action history
VLaMP (G,Ak) increases.

Segmentation errors. As we note in Sec. ?? and Fig. 10
of the main paper, segmentation errors are detrimental
for VPA. As the mis-classification error in the segmenta-
tion model increases, the difference in the performance of
VLaMP (G,Ak, Ok), i.e. the model with access to obser-
vation history, and VLaMP (G,Ak), the model working
only on the action history, increases. A detailed version of
Fig. 10 is included in Fig. 9 with a focus on mean accuracy
(mAcc) and next-step accuracy (nAcc)7. Moreover, since
the observation history has higher influence on predicting
the immediate next action as discussed in Sec. ??, the per-
formance drop due to segmentation classification error is
higher in nAcc as compared to mAcc.

7Refer to the definitions of metrics in Sec. ??

G Ak Ok l = 3 l = 1

SR mAcc mIOU nAcc

1 ✗ ✗ ok 6.8 ± 0.3 28.3 ± 1.9 34.8 ± 2.0 44.5 ± 3.8

2 ✓ ✗ ok 8.9 ± 0.2 34.7 ± 0.7 41.6 ± 0.8 53.1 ± 2.0

3 ✓ ✓ ✗ 14.9 ± 0.3 37.8 ± 0.4 50.8 ± 0.6 48.0 ± 0.2

4 ✓ ✓ Ok 15.2 ± 0.3 43.5 ± 0.8 51.4 ± 0.9 64.8 ± 0.9

R ✓ ✓ Ok 10.7 ± 0.2 36.5 ± 0.7 41.7 ± 0.6 61.4 ± 1.8

Table 5: Role of different inputs and LM pre-training
in VLaMP. Here G, Ak, Ok specify the inputs provided to
VLaMP during training and inference, in terms of goal, ac-
tion history and observation history respectively. ok refers
to the use of most recent observation from the history in-
stead of the full observation history. The mean ± std. error
over 5 runs with different random seeds on CrossTask are
shown. The row R corresponds to VLaMP trained with ran-
dom initialization as compared to LM pretraining.

I.1. Ablations and Error Analysis

Utilizing head-on ablations, we evaluate how the action
history and the visual history affect the plan generation for
VPA. To remove confounding factors, in Tab. 5 we use the
ground truth output for the segmentation module.
Action and observation history improve complementary
planning metrics. As seen in all the rows with action his-
tory Tab. 5, the provision of action history increases diffi-
cult metrics such as SR. In comparing rows 2 and 3, we
see that SR increases by about 67% (8.9 → 14.9), simply
by using action history even without access to any past ob-
servation. However, the lack of observation history affects
nAcc, which drops by 10% (53.1 → 48.0) when observa-
tion history is swapped by action history between rows 2
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Figure 10: Effect of segmentation errors. Performance of
VLaMP on CrossTask with classification noise (%) in the
segmentation.

and 3.
Priors from the pre-trained LM improve performance.
The row R of Tab. 5 shows the performance of VLaMP
when its forecasting module is trained with random initial-
ization, i.e., the transformer of the same architecture trained
from scratch instead of LM pre-training. The performance
in row R is thus much lower than that of VLaMP with pre-
trained LM shown in Tab. 1, which highlights the impor-
tance of LM pre-training.
Segmentation errors are detrimental. The accuracy of
finetuned VideoCLIP model for video-action segmentation
is 80.2 and 68.7 when segmenting a video per second
for CrossTask and COIN datasets respectively. The effect
of such segmentation error in VLaMP’s performance can
be observed by comparing row 4 of Table 5, which uses
ground-truth segments, with row 4 of Table 1 that uses
a finetuned segmentation model – all metrics significantly
drop due to the introduced segmentation error.
Visual history aids in planning when segmentation has
errors. The error of the segmentation module may lead
to mis-classification of actions leading to erroneous action
history. In order to systematically study the effect of er-
roneous action history on VLaMP’s performance in visual
planning, decoupled from VideoCLIP’s segmentation accu-
racy, we perform controlled experiments wherein we add
noise in the ground truth segmentation. Specifically, we re-
place varying amounts of actions in the ground truth action
history by random actions. We also compare two models
–VLaMP(G,Ak, Ok), which uses both action and observa-
tion history, and VLaMP(A,Ak), which only uses action
history. As the noise increases, the gap in the performance
of the model with access to visual history and the one with-
out, rises. This provides evidence for usefulness of observa-
tions for robustness against segmentation classification er-
ror.
Errors increase towards the tail of the activities. In
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Figure 11: Prediction in the tail of long activities is chal-
lenging. mAcc for l = 3 w.r.t. the number of steps in
history (k).

Fig. 11, we shows mAcc w.r.t. the number of steps k in
the history. The performance drops towards the tail of the
activities inspite of access to longer history. Furthermore,
this drop is most significant for the activities that have many
steps like make pancakes, add oil to car, etc. We hypothe-
size that such a drop is due to two reasons: high uncertainty
about the completion of the activity and relatively less num-
ber of training examples in the long tail region of each ac-
tivity. We will discuss this more in detail in Appendix I.

J. Metrics
The planning performance of a VPA model is measured

by comparing the generated plan T̂ = (âk+1, . . . , âk+l) to
the ground truth plan T for l actions in the future, given Vt

and G. Here âk+i denotes the prediction for the k + i-th
step given history till k-th step. Consistent with community
practices [4, 1], we use the following metrics, listed in de-
creasing order of strictness: success rate (SR), mean accu-
racy (mAcc), mean intersection over union (mIOU). Suc-
cess rate requires an exact match between all actions and
their sequence between T̂ and T . Mean accuracy is the ac-
curacy of the actions at each step. Unlike success rate, mean
accuracy does not require a 100% match to ground truth. In-
stead it considers matching at each individual step. Lastly,
mean intersection over union captures the cases where the
model predicts the steps correctly, but fails to identify the
correct order. Concretely,

mIOUl =

∣∣â{k+1:k+l}
⋂

a{k+1:k+l}
∣∣∣∣â{k+1:k+l}

⋃
a{k+1:k+l}

∣∣ , (6)

mAccl =
1

l

l∑
i=1

1[âk+i, = ak+i], (7)

SRl =

l∏
i=1

1[âk+i = ak+i], (8)

where 1[·] is the identity function, which is 1 when the con-
dition in its input is true, and 0, and â{k+1:k+l} denotes the



set of l future actions in T̂ , i.e., a sequence but disregarding
the order. To complement the above metrics, we also mea-
sure the accuracy of predicting the next action i.e. nAcc,
as defined in (9), where ‘n’ stands for next. Note that all
metrics are averaged over the test set details of which are
included in Sec. 4.

nAcc = 1[âk+1 = ak+1] (9)

K. Segmentation Module
This module splits the untrimmed video history Vt into

segment history Sk of multiple segments, each segment
corresponding to an action. The segmentation is done us-
ing a video-action segmentation model in three steps: pre-
processing, classification, and consolidation. In the pre-
processing step, the raw video frames from Vt are bundled
into fixed-length window clips ci, each of length 1 second,
to obtain Vt = (c1, . . . , ct). In the classification step, a
video-action segmentation model is used to output the most
probable action for each clip ci, which can be denoted as
Ãt = (ã1, ã2, . . . , ãt). Finally, in the consolidation steps,
we convert Ãt into a form that can be used by the fore-
casting module; this form consists of two sequences: ac-
tion history Ak and observation history Ok. To this end,
same actions in consecutive seconds in Ãt are consolidated
to form the action history Ak = (a1, . . . , ak). As illus-
trated in Fig. 2, assuming ti denotes the starting times-
tamp for ai, we also extract video frames from ti − δ/2
to ti + δ/2 to obtain a observation window oi correspond-
ing to ai, and consequently the full observation history
Ok = (o1, . . . , ok). The resultant segment history is termed
Sk = ((o1, a1), . . . , (ok, ak)), summarized in Fig. 2.


